1. Given the Banach space $(C[0,1],\|\cdot\|)$ where $\|\cdot\|$ is defined as

$$
\|x\|=\max _{t \in[0,1]}|x(t)|
$$

prove that this Banach space cannot be an inner product space (with the above defined norm induced by the innder product as $\|x\|=\langle x, x\rangle)$.

Hint: Just need to show that the parallelogram equality/identity does not hold for the above defined norm of $C[0,1]$. In other words, just need to find $x, y \in C[0,1]$, such that

$$
\|x+y\|^{2}+\|x-y\|^{2} \neq 2\left(\|x\|^{2}+\|y\|^{2}\right) .
$$

2. If an inner product space X is real (in other words, X is over \mathbb{R}), prove that

$$
\|x\|=\|y\| \quad \text { if and only if }\langle x+y, x-y\rangle=0 .
$$

What does that mean if $X=\mathbb{R}^{n}$ with $n \geq 2$? In other words, try giving a geometric explanation of the fact you just proved for the case $X=\mathbb{R}^{n}$ with $n \geq 2$.

Solution:

1.

Proof. We just need to check against the parallelogram identity to show that it does not hold. Just choose

$$
x(t)=t \text { and } y(t)=1-t .
$$

We can check that $\|x\|=1,\|y\|=1,\|x+y\|=1$ and $\|x-y\|=1$, which ensures that the parallelogram does not hold.
2.

Proof. Just note that $\|x\|=\|y\|$ is equivalent to $\langle x, x\rangle=\langle y, y\rangle$. As

$$
\begin{aligned}
\langle x+y, x-y\rangle & =\langle x, x\rangle-\langle x, y\rangle+\langle y, x\rangle-\langle y, y\rangle \\
& =\langle x, x\rangle-\langle x, y\rangle+\overline{\langle x, y\rangle}-\langle y, y\rangle \\
& =\langle x, x\rangle-\langle x, y\rangle+\langle x, y\rangle-\langle y, y\rangle \\
& =\langle x, x\rangle-\langle y, y\rangle,
\end{aligned}
$$

we are done.

